
Model Blending for Text Classification

Project-II (MA57012) report submitted to

Indian Institute of Technology Kharagpur

in partial fulfilment for the award of the degree of

Master of Science

in

Mathematics and Computing

by

Ramit Pahwa

(14MA20029)

Under the supervision of

Prof. Jayanta Mukhopadhya, Dr Sunav Choudhary, Dr Vishwa Vinay

Department of Computer Science

Indian Institute of Technology Kharagpur

Autumn Semester, 2018-19

April 29, 2018



DECLARATION

I certify that

(a) The work contained in this report has been done by me under the guidance of

my supervisor.

(b) The work has not been submitted to any other Institute for any degree or

diploma.

(c) I have conformed to the norms and guidelines given in the Ethical Code of

Conduct of the Institute.

(d) Whenever I have used materials (data, theoretical analysis, figures, and text)

from other sources, I have given due credit to them by citing them in the text

of the thesis and giving their details in the references. Further, I have taken

permission from the copyright owners of the sources, whenever necessary.

Date: April 29, 2018 (Ramit Pahwa)

Place: Kharagpur (14MA20029)

i



DEPARTMENT OF COMPUTER SCIENCE

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

KHARAGPUR - 721302, INDIA

CERTIFICATE

This is to certify that the project report entitled “Model Blending for Text Clas-

sification” submitted by Ramit Pahwa (Roll No. 14MA20029) to Indian Institute

of Technology Kharagpur towards partial fulfilment of requirements for the award

of degree of Master of Science in Mathematics and Computing is a record of bona

fide work carried out by him under my supervision and guidance during Autumn

Semester, 2018-19.

Prof. Jayanta Mukhopadhya, Dr Sunav

Choudhary, Dr Vishwa Vinay
Date: April 29, 2018 Department of Computer Science

Place: Kharagpur Indian Institute of Technology Kharagpur

Kharagpur - 721302, India

ii

http://www.iitkgp.ac.in/department/CE
http://www.iitkgp.ac.in


Acknowledgements

I express my deep sense of gratitude to my guide Prof. Jayanta Mukhopadhya for

her valuable guidance and inspiration throughout the course of this work. I am

thankful to her for her help, guidance, directions and support and his motivation

towards independent thinking. It has been a great experience working under her

in the cordial environment.I would i also like to thank Prof. Dejani Chakraborty,

Department of Computer Science,IIT Kharagpur,Dr. Viswa Vinay and Dr. Sunav

Choudhary, Adobe Research for their constant guidance and support.

iii



Abstract

Name of the student: Ramit Pahwa Roll No: 14MA20029

Degree for which submitted: Master of Science

Department: Department of Computer Science

Thesis title: Model Blending for Text Classification

Thesis supervisor: Prof. Jayanta Mukhopadhya, Dr Sunav Choudhary, Dr

Vishwa Vinay

Month and year of thesis submission: April 29, 2018

Deep neural networks (DNNs) have proven successful in a wide variety of applications

such as speech recognition and synthesis, computer vision, machine translation, and

game playing, to name but a few. However, existing deep neural network models are

computationally expensive and memory intensive, hindering their deployment in de-

vices with low memory resources or in applications with strict latency requirements.

Therefore, a natural thought is to perform model compression and acceleration in

deep networks without significantly decreasing the model performance, which is

what we call reducing the complexity. In the following work, we try reducing

the complexity of state of the art LSTM models for natural language tasks such as

text classification, by distilling their knowledge to CNN based models, thus reducing

the inference time(or latency) during testing.
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Chapter 1

Introduction

1.1 Motivation

Reducing Complexity of Deep Neural Networks - Why ? Deep neural

networks (DNNs) have proven successful in a wide variety of applications such as

speech recognition and synthesis, computer vision, machine translation, and game

playing, to name but a few. However, existing deep neural network models are

computationally expensive and memory intensive, hindering their deployment in de-

vices with low memory resources or in applications with strict latency requirements.

Therefore, a natural thought is to perform model compression and acceleration in

deep networks without significantly decreasing the model performance, which is

what we call reducing the complexity. As larger neural networks with more lay-

ers and nodes are considered, reducing their complexity becomes critical, especially

for some real-time applications such as online learning and incremental learning. In

addition, recent years witnessed significant progress in virtual reality, augmented

1



Chapter 1. Introduction 2

reality, and smart wearable devices, creating unprecedented opportunities for re-

searchers to tackle fundamental challenges in deploying deep learning systems to

portable devices with limited resources (e.g. memory, CPU, energy, bandwidth).

1.2 Arriving at the Problem

Related Work At the high level, there are two research directions for reducing

model complexity: one is to introduce a completely new architecture with reduced

complexity which mimics the original model and other is to make changes to the

original model itself, without altering its overall structure. By not altering the struc-

ture, we mean applying techniques like quantization, pruning, huffman coding to the

model we want to compress. Here again there are 2 directions: one is to compress

while training, for example training a model with weights that are quantized, like in

trained ternary quantization by (29), and other is compressing a pre-trained model,

for example using quantization, pruning etc. like in deep compression by (10).

The second approach is to introduce a new architecture that mimics the original

model. Here one idea is knowledge distillation due to (11), which is basically to

make the student model learn the behaviour of the teacher model. The caveat here

is that the the architecture of the student model has to be hand designed. Due to

this, there have been explorations on learning the ‘optimal’ architecture so to speak.

There have been some very recent works on architecture search, which try to search

the architecture from scratch via reinforcement learning or genetic algorithms, with

the downside being it is computationally expensive. Another approach could be

restricting the search space to the teacher model only. It relies on the premise that

since the teacher model is able to achieve high accuracy on the dataset, it already

contains the components required to solve the task and therefore is a suitable search
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space for compressed architecture - an idea that has been used in N2N compression

by (1). There also have been some very recent works that try to combine some

of these approaches. For example, quantized distillation by (20) which is basically

knowledge distillation but with the weights quantized while training to learn the

behaviour of the teacher model.

Research gaps Much of the recent work on reducing model complexity is focused

on learning new architectures from scratch or using a teacher model, via reinforce-

ment learning, which is the second approach mentioned above. However, the reward

functions that these reinforcement learning methods use are based on just accuracy

and compression. None of these methods incorporate latency in their reward func-

tion, which can be important in latency strict applications. We first thought of

working in this direction, but the reinforcement learning paradigm for architecture

search requires a huge amount of computational resources, which we didn’t have at

our disposal. Thus we thought of reducing the scope of the problem, and during

literature reading came across a paper by (2) that compared RNNs and CNNs for

sequence modelling. It said that CNNs are advantageous over RNNs for sequence

modelling in that parallel processing is possible for them, resulting in reduced latency

during training and testing. Since almost all state of the art models for sequence

modelling tasks like machine translation etc. are RNN based, we thought of working

on distilling the knowledge from these architectures to CNN based models, a recent

study proposes utilizing the outputs of LSTM while training the CNN which tries

to incorporate ’dark knowledge’ (11) for automatic speech recognition task (7). We

propose blending for text classification task.
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1.3 Text Classification

Text classification is fundamental problem in Natural Language Processing(NLP)

and is an essential component in applications such as sentiment analysis (16), ques-

tion classification (24) and topic classification (27).In recent year there has been

a shift from traditional bag of words (BoW) model, which treats textual data as

an unordered set of words (26) to more recent order sensitive models which have

achieved exceptional performance across numerous NLP tasks. The challenge for

textual modelling is to tackle how to capture features from various textual units

such as phrases, sentences and documents. Benefitting from the sequential nature of

the textual data, the recurrent neural network (RNN) in particular Long short term

memory (LSTM) (28) units has been successful in modelling numerous classification

tasks. But it comes with its limitations as it processes the data in a sequential

manner, thereby increasing the execution latency and hindering its deployment in

strict latency environments. The alternative deep learning architecture which in

the recent years has gained popularity over LSTM is the convolution neural net-

work (CNN) (15) primarily due to its parallelism, flexible receptive filter window

(25) and low memory requirement while training in comparison to LSTM network.

The inherent difference in the architectures of CNN and LSTM pose an interesting

question of whether the functions they represent are different and if so, is there a

method to distill knowledge from one of them to other. In this paper we apply

model blending, a method to train very accurate CNN models by using LSTM

priors to guide the training process, to text classification. The choice to distill the

knowledge from LSTM to CNN and not vice-versa is motivated by the fact that

CNN’s are faster during inference time due to their parallelism. We thus arrive at

the problem statement.
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1.4 Problem Statement

Distilling knowledge from state of the art RNN architectures () for natural lan-

guage tasks such as text classification, machine translation etc. into CNN based

architectures and comparing the latency and accuracy. As well as effectively em-

ploy a Computer Vision (CV) like transfer learning mechanism to Natural Language

Processing (NLP) . In summary, the contributions to achieve this are :

• We propose blending into CNN using state of the art LSTM priors resulting in

accurate CNN classifiers which are 15x more computationally efficient at test

time and take a fraction of the training time as compared with the training of

LSTM network.

• We empirically find that using a more accurate Teacher LSTM we can improve

on the performance of the model.

• We extensively evaluate the blending process across text classification tasks

such sentiment analysis (16), question classification (24) and topic classifica-

tion and obtain competitive performance when compared with state of the art

models.

• We provide vision style transfer learning by using recurrent language model

trained on the corpus(12), instead of traditional embedding based transfer

(19).



Chapter 2

RNNs vs CNNs

2.1 RNNs vs CNNs

Deep learning practitioners commonly regard recurrent architectures as the default

starting point for sequence modeling tasks. On the other hand, recent research in-

dicates that certain convolutional architectures can reach state-of-the-art accuracy

in audio synthesis, word-level language modeling, and machine translation ((18);

(14); (4); (6)). This raises the question of whether these successes of convolu-

tional sequence modeling are confined to specific application domains or whether a

broader reconsideration of the association between sequence processing and recur-

rent networks is in order. The paper by (2) addresses this question by conducting

a systematic empirical evaluation of convolutional and recurrent architectures on a

broad range of sequence modeling tasks. We provide a summary of the advantages

and disadvantages of using CNNs over RNNs for sequence modelling, as presented

in the paper.

Advantages of using CNNs over RNNs

6



Chapter 2. RNNs vs CNNs: Which is better for Sequence Modelling ? 7

• Parallelism: Unlike in RNNs where the predictions for later timesteps must

wait for their predecessors to complete, convolutions can be done in paral-

lel. Therefore, in both training and evaluation, a long input sequence can be

processed as a whole in CNN, instead of sequentially as in RNN.

• Flexible receptive field size: A CNN can change its receptive field size

in multiple ways. For instance, stacking more dilated (causal) convolutional

layers, using larger dilation factors, or increasing the filter size are all viable op-

tions (with possibly different interpretations). CNNs thus afford better control

of the model’s memory size, and are easy to adapt to different domains.

• Stable gradients: Unlike recurrent architectures, CNN has a backpropaga-

tion path different from the temporal direction of the sequence. CNN thus

avoids the problem for RNNs.

• Low memory requirement for training: Especially in the case of a long

input sequence, RNNs and GRUs can easily use up a lot of memory to store

the partial results for their multiple cell gates. However, in a CNNs the fil-

ters are shared across a layer, with the backpropagation path depending only

on network depth. Therefore in practice, gated RNNs likely to use up to a

multiplicative factor more memory than CNNs.

• Variable length inputs: Just like RNNs, which model inputs with variable

lengths in a recurrent way, CNNs can also take in inputs of arbitrary lengths by

sliding the 1D convolutional kernels. This means that CNNs can be adopted

as drop-in replacements for RNNs for sequential data of arbitrary length.

Disadvantages of using CNNs over RNNs

• Data storage during evaluation: In evaluation/testing, RNNs only need

to maintain a hidden state and take in a current input xt in order to generate
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a prediction. In other words, a “summary” of the entire history is provided by

the fixed-length set of vectors ht, and the actual observed sequence can be dis-

carded. In contrast, CNNs need to take in the raw sequence up to the effective

history length, thus possibly requiring more memory during evaluation.

• Potential parameter change for a transfer of domain: Different domains

can have different requirements on the amount of history the model needs

in order to predict. Therefore, when transferring a model from a domain

where only little memory is needed to a domain where much longer memory is

required, CNN may perform poorly for not having a sufficiently large receptive

field.

Conclusion The comparision above demonstrates that CNNs may well be the

best for sequence modelling in certain situations. The advantage that we are most

concerned about is the reduced inference time due to parallelism. In the next chap-

ter, we introduce a method for distilling the knowledge of RNN architectures into

CNN architectures.



Chapter 3

Methodology

Although LSTMs yield state of the art performance on numerous tasks, they are

slow to evaluate at test time, thus restricting their deployment in strict latency

environments. CNNs on the other hand are much faster at test time on account

of their parallelism, though subpar in performance as compared to LSTMs. The

proposed system aims to improve the performance of the CNNs while reaping the

benefits we get from it during deployment. The methodology, which we call model

blending, is inspired by (7). Their objective is to improve the performance of the

CNN model on automatic speech recognition task by mimicking the output of the

LSTM model. The process is somewhat analogous to knowledge distillation (11),

in which a bigger more powerful model referred as the teacher is used to train a

compact model referred as the student. The teacher here is a variant of Recurrent

Neural Network i.e Long Short-Term Memory (LSTM) which can capture capture

long term dependencies and the student is a Convolutional Neural Network (CNN).

The choice of having the CNN model as the student is what gives us benefits in terms

of latency at test time. Thus, the blending process gives the benefits of ensembling

the predictions of both the models (namely LSTM and CNN) while bypassing the

9
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usual objection of an ensemble requiring too much computation at test time. An

intuitive implementation is shown in figure 1.

Figure 3.1: Blending Process

3.1 Teacher: LSTM

LSTMs exhibit superior performance not only in classification (17; 12) and speech

, but also in handwriting recognition (9; 8) and parsing (23), this is primarily due

their ability to capture long range interaction which is an essential component in

understanding the semantics of the sentence. The Figure shows the LSTM unit.

The governing equations are as follows:

ft = σg(Wfxt + Ufht−1 + bf ) (3.1)

it = σg(Wixt + Uiht−1 + bi) (3.2)

ot = σg(Woxt + Uoht−1 + bo) (3.3)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc) (3.4)

ht = ot ◦ σh(ct) (3.5)

For classification tasks, we train two networks, the first one is a Bi-Directional
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Figure 3.2: The repeating module in an LSTM contains four interacting layers.

LSTM network (28) which is a tough baseline to break for most NLP tasks. The

sentence S = (x1, x2, ..., xm), where m is the length of the sentence is taken as input

and then we use glove embedding (19) of size 300 to embed the words of the sentence.

The above obtained sentence matrix S has a dimension of N×d, here N is the batch

size and d is the fixed embedding dimension of each word. This matrix is given as

input to the Bi-direction LSTM network, the last hidden state ~ht of the forward

network along with the last hidden state of the backward network
←−
ht is passed into

the fully connected network to predict the outputs. This forms a baseline RNN

teacher for our experiments. We further utilize the state of the art architecture

i.e AWD-LSTM (17) architecture and employ the same training regime mentioned

in (12) namely discriminative fine-tuning, gradual unfreezing of layers and slanted

triangular learning rates to achieve state of the art performance for these tasks.The

Pseudo code is provided below to define the RNN network in pytorch.

import torch.nn as nn

class RNN(nn.Module ):

def __init__(self , v_s , emb_dim , h_dim , o_dim , n, bi , d):

super (). __init__ ()

self.embedding = nn.Embedding(v_s , emb_dim)

self.rnn = nn.LSTM(emb_dim , h_dim , n, bi, dropout=d)
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self.fc = nn.Linear(h_dim*2, o_dim)

self.dropout = nn.Dropout(d)

def forward(self , x):

#x = [sent len , batch size]

embedded = self.dropout(self.embedding(x))

#embedded = [sent len , batch size , emb dim]

output , (hidden , cell) = self.rnn(embedded)

#output = [sent len , batch size , hid dim * num directions ]

#hidden = [num layers * num directions , batch size , hid dim]

#cell = [num layers * num directions , batch size , hid dim]

#concat the final forward (hidden [-2,:,:])

# and backward (hidden [-1,:,:]) hidden layers

#and apply dropout

hidden = self.dropout(torch.cat(( hidden[-2,:,:], hidden [-1,:,:]), dim =1))

#hidden = [batch size , hid dim * num directions ]

return self.fc(hidden.squeeze (0))

Listing 3.1: Algorithm for Recurrent Neural Network LSTM applied to Text

Data

from torch import *

class RNN_Encoder(nn.Module ):

"""A custom RNN encoder network

"""

initrange =0.1

def __init__(self , ntoken , emb_sz , nhid , nlayers , pad_token , bidir=False ,

dropouth =0.3, dropouti =0.65, dropoute =0.1, wdrop =0.5):

""" Default constructor for the RNN_Encoder class

Returns:

None

"""

super (). __init__ ()

self.ndir = 2 if bidir else 1
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self.bs = 1

self.encoder = nn.Embedding(ntoken , emb_sz , padding_idx=pad_token)

self.encoder_with_dropout = EmbeddingDropout(self.encoder)

self.rnns = [nn.LSTM(emb_sz if l == 0 else nhid ,self.ndir ,1,) for l in range(nlayers )]

if wdrop: self.rnns = [WeightDrop(rnn , wdrop) for rnn in self.rnns]

self.rnns = torch.nn.ModuleList(self.rnns)

self.encoder.weight.data.uniform_(-self.initrange , self.initrange)

self.emb_sz ,self.nhid ,self.nlayers ,self.dropoute = emb_sz ,nhid ,nlayers ,dropoute

self.dropouti = LockedDropout(dropouti)

self.dropouths = nn.ModuleList ([ LockedDropout(dropouth) for l in range(nlayers )])

def forward(self , input ):

""" Invoked during the forward propagation of the RNN_Encoder module.

Args:

input (Tensor ): input of shape (sentence length x batch_size )

Returns:

raw_outputs (tuple(list (Tensor), list(Tensor )): (no dropout , dropout)

"""

sl,bs = input.size()

if bs!=self.bs:

self.bs=bs

self.reset()

emb = self.encoder_with_dropout(input , dropout=self.dropoute if self.training else 0)

emb = self.dropouti(emb)

raw_output = emb

new_hidden ,raw_outputs ,outputs = [],[],[]

for l, (rnn ,drop) in enumerate(zip(self.rnns , self.dropouths )):

current_input = raw_output

with warnings.catch_warnings ():

warnings.simplefilter("ignore")

raw_output , new_h = rnn(raw_output , self.hidden[l])

new_hidden.append(new_h)

raw_outputs.append(raw_output)

if l != self.nlayers - 1: raw_output = drop(raw_output)

outputs.append(raw_output)

self.hidden = repackage_var(new_hidden)

return raw_outputs , outputs



Chapter 3. Blending RNNs into CNNs 14

Listing 3.2: Algorithm for Recurrent Neural Network AWD-LSTM applied to

Text Data

3.2 Student: CNN

Convolution Neural Networks have gained popularity as they perform at par with

state of the art LSTM’s networks and have the added advantage of of being faster

at test time. The CNN network for text classification differs from the convolutional

networks used for computer vision (22; 21). The architecture for classification uses

only two or three convolutional layers with large filters followed by more fully con-

nected layers and only use convolution or pooling over one dimension, either time

or frequency (15). For the purpose our experiment we operate over time. The

embedding matrix is taken as input, keeping the embedding dimensions and the ini-

tialization same as that used by the teacher network. Inspired by this we construct

our CNN model (referred to as a-CNN) which will act as student learner. We also

use a deep CNN network (3) (referred as b-CNN), which works at the character level

and performs small convolution and pooling operations as state of the art baseline

of CNN architecture. The architecture of a-CNN is shown in figure . The Pseudo

code of the class is provided below.

import torch.nn as nn

import torch.nn.functional as F

class CNN(nn.Module ):

def __init__(self , v, emb_dim , n, f_sizes , o_dim , d):

super (). __init__ ()

self.embbeding_dim = emd_dim

self.embedding = nn.Embedding(v, self.embedding_dim)

self.convs = nn.ModuleList ([nn.Conv2d(in_channels =1,) out_channels=n,

kernel_size =(fs,embedding_dim )) for fs in filter_sizes ])
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self.fc = nn.Linear(len(filter_sizes )*n_filters , output_dim)

self.dropout = nn.Dropout(dropout)

def forward(self , x):

#x = [sent len , batch size]

x = x.permute(1, 0)

#x = [batch size , sent len]

embedded = self.embedding(x)

#embedded = [batch size , sent len , emb dim]

embedded = embedded.unsqueeze (1)

#embedded = [batch size , 1, sent len , emb dim]

conved = [F.relu(conv(embedded )). squeeze (3) for conv in self.convs]

#conv_n = [batch size , n_filters , sent len - filter_sizes [n]]

pooled = [F.max_pool1d(conv , conv.shape [2]). squeeze (2) for conv in conved]

#pooled_n = [batch size , n_filters ]

cat = self.dropout(torch.cat(pooled , dim =1))

#cat = [batch size , n_filters * len( filter_sizes )]

return self.fc(cat)

Listing 3.3: Algorithm for Convolution Neural Network applied to Textual Data

Figure 3.3: Student Network
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3.3 Blending

Both RNNs and CNNs are powerful models, but the mechanisms that guide their

learning are quite different. That creates an opportunity to combine their predic-

tions, implicitly averaging their inductive biases. A classic way to perform this is

ensembling, that is, to mix posterior predictions of the two models in the following

manner :

pensemble(y|s) = γpLSTM(y|s) + (1− γ)pCNN(y|s) (3.6)

where γ ∈ [0, 1] and si = (x1, x2, ..., xj, ..., xm). Also, pLSTM(y|s) and pCNN(y|s) are

the probability of y output class given a feature vector xj ∈d or sentence in this

case. This combination is in accordance with conditions proposed by (5) i.e. “a

necessary and sufficient condition for an ensemble of classifiers to be more accurate

than any of its individual members is if the classifiers are accurate and diverse”

to form an ensemble of classifiers,but is inefficient at test time as it requires the

posterior prediction of both the models at test time to compute the final predic-

tions. The method we propose is inspired by the process of knowledge distillation

(11) which aims to distill knowledge from complex teacher models to much simpler

student models by matching output logits, as well as model blending (7) which uses

the posterior predictions of LSTM to train vision style CNN architectures for auto-

matic speech recognition task. We use a different class of CNN which utilizes large

filter sizes and are shallow in comparison to the vision style CNN. We train our

CNN architecture for text classification task namely sentiment analysis, question

classification and topic classification. To the best of our knowledge, this is first time

CNN architectures are trained in the presence of LSTM priors for these classification

tasks. To incorporate the LSTM information during training of the CNN we modify

the loss function to combine loss from hard labels from the training data with a

loss function which penalises deviation from predictions of the LSTM teacher. The
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training objective is to minimize the weighted sum of the cross-entropy loss :

L = λ · Lsoft + 1− λ · Lhard (3.7)

Lsoft = H(pLSTM(c|si), qCNN(c|si))

= −
∑
i

pLSTM(c|si) · log qCNN(c|si) (3.8)

Lhard = H(qCNN(yi|si), ytruei )

= −
∑
i

qCNN(yi|si) · log ytruei (3.9)

where pLSTM(c|si) is the probability of class c for the the given training example

si predicted by the teacher LSTM network, qCNN(c|si) is the probability of class

c for the the given training example si predicted by the student CNN and ytruei

is the true class for the training example si. Here λ ∈ [0, 1], helps us control

the relative contribution of the two losses. This modified loss function helps us to

incorporate information learnt by LSTM network while training the student CNN

network, this method give similar performance to the ensemble of the two models,

but it is computationally 17x less expensive at test time than the ensemble. Thus

blending results in more accurate and efficient classifiers at test time.
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Experiments and Results

4.1 Dataset

We evaluate our models on four public dataset namely IMDB dataset (16) for sen-

timent classification, TREC-6 (24) for question classification, AG’s corpus of news

articles for topic modeling and DBpedia by (27). The description of the datasets

are tabulated below:

Table 4.1: Description of datasets

Dataset IMDB TREC-6 AG DBPedia

Training 25k 5452 120k 560k

Testing 25k 500 7600 70k

Classes 2 6 4 14

Avg-words 234 - 45 55

18
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Table 4.2: Comparision across datasets. one column for each dataset is accuracy

Model IMDB TREC-6 AG DBPedia

Linear Fasttext (13) 85.22 88.2 92.6 98.5

RNN

LSTM 82.77 90.2 82.77 -

Bi-LSTM (28) 84.11 93.0 93.0 99.12

AWD-LSTM (17) 95.4 96.4 95.0 99.20

CNN

a-CNN (15) 88.22 92.0 91.6 98.6

b-CNN (3) - 93.0 91.3 98.4

c-CNN (27) - 93.2 87.2 (90.49) 98.3

Ensemble
CNN + LSTM 88.63 93.15 92.0 99.0

CNN + AWD-LSTM 95.4 96.7 95.0 99.23

Blended*
CNN + LSTM 87.23 91.08 92.3 99.14

CNN + AWD-LSTM 93.2 92.34 92.5 99.1

Table 4.3: Comparison on the execution time of the methods is execution time
compared to the our proposed CNN (15) on IMDB dataset.

Model Execution Time

Linear Fasttext 1.1x

RNN

LSTM 5.55x

Bi-LSTM 5.64x

AWD-LSTM 15.5x

CNN

a-CNN 1.0x

b-CNN 4.3x

Ensemble
a-CNN + LSTM 6.2x

a-CNN + AWD-LSTM 16.7x

Blended*
a-CNN + LSTM 1.0x

a-CNN + AWD-LSTM 1.0x

4.1.1 Implementation Details

Input. We adopted the word vectors from (19).The word embedding used were of

size 300 for our LSTM network.

Training Setting. For training the state of the art AWD-LSTM (17) Teacher we

follow similar training regime as (12) with an embedding size of 400, 4 layers,1150

hidden activations per layer, and a BPTT batch size of 70. We apply different
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dropout to different types as suggested by and (17) The student CNN network

(15; 27) has filter sizes of 3,4 and 5. The model were implemented in pytorch and

were adapted from prior works (12; 15). The CNN trained using the proposed

method outperforms the CNN architecture and the teacher network and is 15x more

computationally efficient from its teacher. The experiments were first performed

on IMDB dataset for sentiment analysis to tune γ and λ hyper-parameter to their

optimal values of 0.4 and 0.5 we then validate these parameter using the TREC-6

data set for question classification. We use Adam with default setting β1 = 0.9

and β2 = 0.99 with a minibatch of 64.The practises otherwise are same as used by

(12; 17)

4.1.2 Baseline and Results

We compare our method and utilize several of the popular models in our experiments

: linear model fasttext (13), we use CNN architecture inspired by (15) and train it

using numerous teacher (17; 28) which are state of the art for text classification.

We compare the model with character level CNN (27) referred to as c-CNN and

very Deep CNN network (3). We also benchmark it against (25) which proposes

dense connection between convolutional layer and multi-scale feature attention for

text classification. They also experiment with depth of the network an found that

shallow networks perform comparable to the deep models with only a slight drop

in performance. Shallowness of the model is advantageous for deployment to low -

resource devices. Our proposed training regime improves the performance of shallow

CNN and performs comparable to other popular networks of the type.



Chapter 4. Experiments 21

4.2 Main Results

The CNN trained through the proposed method is comparable to its Teacher LSTM

network, due to the shallowness of the models it is more interpretable and is faster at

the test time and hence the model can be deployed to mobile devices. The provides

evidence towards using a trained complex network transferring the ’dark knowledge’

(11) to a much simpler model which is computationally efficient at inference time.
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Conclusion

We see that blending the state of the art RNN into the CNN model, results in

minimal drop in accuracy . But the inference time is reduced greatly, by about 18

times compared to the ensemble. This shows that exploring blending of state of the

art RNN models into CNN models is promising, and much more can be achieved if

we sacrifice a bit on the inference time (by making the CNN model more deep, for

example).This also increase deployability of these models to mobile devices

i.e. Smartphones, Cameras etc.

22
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Future Work

The current CNN architecture we used had only a single convolutional layer. We can

try blending into CNN architectures with more than one layer. This would increase

the inference time a bit, but the accuracy would also improve. Basically, we try

experimenting with the CNN architecture until we reach a sweet spot with respect

to both inference time and accuracy. Moreover, our current work deals with only

sentence classification. We can try to apply this technique to other natural language

tasks which require sequence modelling such as machine translation, in which the

state of the art models are RNN based.

23
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Appendix A

This contains basic implementation of the above mentioned algorithm in python it

has the following dependencies which are mentioned below:

• Python >= 3.0

• fastai == 0.7.0

• torchtext == 0.2.3

The experiments were performed on Google COLAB, which is free jupyter note-

book service which has GPU capabilities.Experiments were performed on NVIDIA

K80 GPU, and testing of the models were done on MI A2 mobile device by

converting the Pytorch model to Tensorflow model using ONYX.

24
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