
Model Blending for Text Classification

Ramit Pahwa1 Surya Dwivedi2 Jayanta Mukhopadhyay3 Sunav Choudhary4 Vishwa Vinay4∗

1Adobe
2Oracle

3Indian Institute of Technology, Kharagpur
4Adobe Research

{ramitpahwa123,surya2191997}@gmail.com, jay@cse.iitkgp.ac.in, {schoudha,vinay}@adobe.com

Abstract

State-of-the-art for many NLP tasks are domi-
nated by deep learning models. Effectively uti-
lizing the signal in the sequence of words via
Recurrent Neural Networks (RNNs) provides
impressive accuracies, especially when using
LSTM-based models. These models however
have the disadvantage of longer scoring times.
Convolutional Neural Networks (CNNs) on
the other hand are significantly faster dur-
ing inference due to their parallelism. More-
over, some recent work suggests that RNN
and CNN provide complementary information
when trained on the same data for various NLP
tasks. In this paper, we propose a method that
allows the training of very competitive CNNs
by blending in the complementary knowledge
from an LSTM Teacher model. We empiri-
cally validate the method on multiple standard
text classification datasets to demonstrate that
the Student CNN model can be up to 15x faster
than the Teacher LSTM, while being more ac-
curate than training the same CNN model di-
rectly from the data.

1 Introduction

Text classification is fundamental problem in Nat-
ural Language Processing (NLP) and is an essen-
tial component in applications such as sentiment
analysis (Maas et al., 2011), question classification
(Voorhees and Tice, 1999) and topic classification
(Zhang et al., 2015). In recent year there has been
a shift from traditional bag of words (BoW) model,
which treats textual data as an un-ordered set of
words (Wang and Manning, 2012) to more recent
order sensitive models which have achieved ex-
ceptional performance across numerous NLP tasks.
The challenge for textual modelling is to tackle
how to capture features from various textual units
such as phrases, sentences and documents. Ben-
efiting from the sequential nature of the textual

data, the recurrent neural network (RNN) in par-
ticular Long short term memory (LSTM) (Zhou
et al., 2016) units have been successful in mod-
elling the sequence in numerous NLP tasks. But
it comes with its limitations as it processes the
data in a sequential manner, thereby increasing the
execution latency and hindering deployment on
devices with strict latency requirements. The al-
ternative deep learning architecture which in the
recent years has gained popularity over LSTM is
the convolution neural network (CNN) (Kim, 2014)
primarily due to its parallelism, flexible receptive
filter window (Wang et al., 2018) and low mem-
ory requirement while training in comparison to
LSTM network. The inherent difference in the
architectures of CNN and LSTM pose an inter-
esting question of how similar the functions they
represent are . A recent work by (Yin et al., 2017)
shows that the knowledge gained by LSTM and
CNN architectures are complementary in nature.
Thus a natural question is whether there exists a
method to incorporate this complementary knowl-
edge among the different model families. In this
paper we answer this question in affirmative and
propose model blending, a method to incorporate
the knowledge of LSTMs into CNNs during their
training. The choice to blend the knowledge from
LSTM into CNN and not vice-versa is motivated
by the fact that CNNs are faster at test time due
to their inherent parallelism. Thus, we blend the
complementary inductive biases of two deep learn-
ing models, namely LSTM and CNN, resulting in a
CNN model which is much more faster at test time
as compared to the teacher LSTM. In summary, the
contributions of this paper include:

• We propose blending into CNN using LSTM
priors resulting in accurate CNN classifiers
which can be upto 15x more computationally
efficient at test time and take a fraction of

the training time as compared to the teacher
LSTM.

• We empirically find that using a more accu-
rate Teacher LSTM we can improve on the
performance of our Student model.

• We extensively evaluate the blending process
across text classification tasks such sentiment
analysis (Maas et al., 2011), question clas-
sification (Li and Roth, 2002; Voorhees and
Tice, 1999) and topic classification (Zhang
et al., 2015; Lehmann et al., 2015)and ob-
tain competitive performance when compared
with state of the art models.

2 Related Work

There are two streams of literature relevant to the
current work. On the one hand, there are standard-
ized text classification tasks with published works
aimed at increasing the effectiveness of models
on reference datasets. The current paper concen-
trates on flavors of text classification, but does not
provide a comprehensive overview of recent work
motivated by task-specific considerations. Where
applicable, the choice of baselines and reference
models however reflects closest state-of-the-art in
terms of accuracies and performance.

More relevant to the work here are methods that
have general applicability, but for whom empirical
evidence is provided on NLP specific tasks and
datasets. These could be intuitions about model
choices or training regimes. As an example, un-
supervised data augmentation methods combined
with Bi-directional Transformer Networks (Devlin
et al., 2018) provide the best performance on a
number of NLP tasks - sentiment classification on
IMDB movie reviews , topic classification on DB-
pedia (Lehmann et al., 2015), etc.

In this spirit, flavors of RNNs have extensively
been used in NLP tasks because of their strong
performance in processing sequential data. Of
these, LSTM units (Hochreiter and Schmidhuber,
1997) have proved to be successful in a variety
of language modelling tasks - classification, ma-
chine translation and text generation. These RNN
variants, and specifically LSTM-based models are
currently the most effective in many NLP appli-
cations. They represent a difficult to beat bench-
mark on topic classification on AG-News dataset,
question classification on TREC-6, and related
tasks (Sachan et al., 2018; Howard and Ruder,

2018; Zhou et al., 2016; Wang, 2018). This is an
area of active work, for example, AWD-LSTM in-
troduced by (Merity et al., 2017), utilizes effective
regularization to outperform other deep recurrent
models.

Although we achieve a gain performance but this
comes at the cost of increased training and execu-
tion times. The alternative are CNNs (Collobert
et al., 2011), a model class more common for other
modalities like images. They utilize convolution
filters on sliding windows for a text sequence and
applied a convolution operation to capture the most
useful local features. Again, there is active work
aimed at increasing the efficacy of these CNN mod-
els.

For example, (Kim, 2014) adopted multiple fil-
ters with different window sizes to extract multi-
scale convolutional features for text classification.
Similarly, to capture word relations of varying
sizes, (Kalchbrenner et al., 2014) proposed a dy-
namic k-max pooling mechanism.

Recently there have been comparisons between
RNN and CNN architectures as to which is better
suited for sequence modelling. (Bai et al., 2018)
conduct a systematic evaluation of generic convo-
lutional and recurrent architectures for sequence
modeling. The key idea they posit is that CNN
should be regarded as a natural starting point for
sequence modeling tasks due to various advantages
such as parallelism and less training time as com-
pared to RNN’s. Other recent works have aimed to
combine aspects of RNN and CNN architectures.
The authors of (Zhou et al., 2015) propose the stack-
ing of CNN and LSTM in a unified architecture for
semantic sentence modeling.

Closest to the current work is (Geras et al., 2015),
where the authors show that even more accurate
CNNs can be trained under the guidance of LSTMs
for certain speech recognition tasks as the two ar-
chitecture have complementary inductive biases
(Hinton et al., 2015). We are also motivted by re-
cent work by (Yin et al., 2017) that shows that for
NLP tasks, the knowledge gained by LSTM and
CNN architectures are complementary in nature.
Thus, the method due to (Geras et al., 2015) can
also be extended to NLP tasks, and this is the focus
of the current paper.

3 Method

3.1 Model Blending
As mentioned in the previous section, there has
been some recent work which suggests that RNNs
and CNNs provide complementary information
when trained on the same data. RNN computes
a weighted combination of all words in the sen-
tence, while the CNN extracts the most informative
ngrams for the relation and only considers their re-
sulting activations. Given this, methods to improve
the performance of one architecture, by incorpo-
rating the complementary knowledge of the other
architecture are of interest.

One naive way to do this is ensembling, i.e. by
combining the predictions of the two models as
follows:

pensemble(c|s) = γpRNN (c|s)+(1−γ)pCNN (c|s)
(1)

Here, p∗(c|s) is the probability of a particular
class (since we focus here on classification tasks)
represented by c given the sentence s. While this
potentially increases accuracy if the RNN and CNN
models provide orthogonal information (as we ex-
pect them to in our case), there are downsides.
Mainly, the ensemble is inefficient at test time as
it requires us to hold both the models (RNN and
CNN) in memory and score using them both.

We propose an alternative which is inspired from
knowledge distillation (Hinton et al., 2015). To
transfer the knowledge of one model (Teacher) into
another (Student), we can use a training objective
that combines the loss on the hard labels from the
training data with a loss function which penalizes
deviation from predictions of the teacher. That is,
we optimize:

L = λ · Lsoft + (1− λ) · Lhard (2)

Lsoft = H(pT (ci|s), qS(ci|s))

= −
∑
i

pT (ci|s) · log qS(ci|s) (3)

Lhard = H
(
qS(ci|s), ctruei

)
= −

∑
i

qS(ci|s) · log ctruei (4)

Here, the loss is for one data point (sentence s),
with pT and qS being the output of the Teacher
and Student models respectively. Lsoft is the
cross-entropy difference between the predictions

of teacher(soft labels) and the student. Lhard is
the cross-entropy difference between the ground
truth(hard labels) and the predictions of the student.
The coefficient λ ∈ [0, 1] controls the weights of
the error on soft and hard labels. Thus, the final
training objective is:

L = λ · Lsoft + (1− λ) · Lhard (5)

Lsoft = H(pRNN (c|si), qCNN (c|si))

= −
∑
i

pRNN (ci|s) · log qCNN (ci|s)

(6)

Lhard = H
(
qCNN (ci|s), ctruei

)
= −

∑
i

qCNN (ci|s) · log ctruei (7)

In principle we can use both the combinations,
i.e., RNN as Teacher and CNN as Student and vice-
versa, but having the CNN as student would be
beneficial in terms of inference time. This is due
to the fact that parallel computation is possible for
CNNs but not for RNNs. Thus in this work, we
chose to evaluate the utility of distilling the knowl-
edge of RNN Teachers into CNN Students. As
indicated in (Geras et al., 2015), since the Teacher
and Student may not differ in terms of model capac-
ity (number of parameters), this method is referred
to as model blending rather than distillation.

3.2 Teacher: RNN
We experiment using two LSTM networks as the
teacher. The first, i.e. Bi-Directional LSTM is a
tough baseline to break for most NLP tasks.The sen-
tence S = (x1, x2, ..., xm), where m is the length
of the sentence is taken as input and then we use
glove embedding (Pennington et al., 2014) of size
300 to embed the words of the sentence.

At each time step, the word embedding e(xt) at
that time step is passed through the forward and
backward LSTM units to produce two hidden states
(
−→
ht ,
←−
ht) respectively. The last hidden state of the

forward
−→
hT and backward network

←−
hT are concate-

nated and passed into a fully connected network
to predict the outputs. This forms a baseline RNN
teacher for our experiments. Detailed equations are
as under:

−→
ht = f1(

−−→
ht−1, e(xt)) (8)

←−
ht = f2(

←−−
ht−1, e(xt)) (9)

p(y|S) = σ(W [
−→
hT ,
←−
hT] + b) (10)

f1 and f2 are the functions as in a LSTM unit.
The second LSTM network we use is the

AWD-LSTM (Merity et al., 2017) architecture
and employ the same training regime mentioned
in (Howard and Ruder, 2018) namely discrimina-
tive fine-tuning, gradual unfreezing of layers and
slanted triangular learning rates which achieve state
of the art performance for these tasks. This ensures
that our Teacher models represent current best prac-
tices in terms of producing very effective models
tailored for specific tasks. Our experiments show
that these Teacher models exhibit performance lev-
els that the Student models are unable to beat. How-
ever, the Student models - whose advantages are
described next - are able to bridge the accuracy
gap.

3.3 Student: CNN

We use the CNN architecture for text classification
due to (Kim, 2014) as the student. Each word
xi in the input is embedded into a k dimensional
word vector e(xi). A sentence of length n which is
padded when necessary is represented by a kXn
matrix as:

S1:n = [e(x1), e(x2), ..e(xn)] (11)

Si:j represents the sub-matrix
[e(xi), e(xi+1), ..e(xj)] A convolution involves a
filter w of dimension hXk applied to a window
of h words to produce a feature. A feature fi is
generated from Si:i+h−1 as follows:

fi = g(w.Si:i+h−1 + b) (12)

where b is the bias term and g is any non linear
function such as tanh. This filter is applied to each
possible window to produce a feature map:

f = [f1, f2, ...fn−h+1] (13)

Thereafter, max over time pooling is applied to
obtain the most important feature f ′, i.e. f ′ =
max(f). In this way the model uses multiple
convolutional filters to obtain multiple features.
These features are then passed to a fully connected
layer followed by softmax to predict the probability
of the classes. More details regarding the hyper-
parameters used in experiment are mentioned in
the experiment 4.3.2.

4 Experiments

In this section, we conduct a thorough empirical
validation of the method previously described. We
cover a range of text classification tasks represented
by their corresponding benchmark datasets which
are described next.

4.1 Datasets
The proposed model is tested on four datasets. The
Summary statistics for these are provided in Table
2.

1. IMDB dataset1:Sentiment Classification
Dataset (Maas et al., 2011). This is a large
scale dataset for binary sentiment classifica-
tion (positive and negative) of movie reviews.

2. TREC-62: Question Classification Dataset
(Li and Roth, 2002). This task involves clas-
sification of question into 6 question types
(abbreviation, description, entity, human, lo-
cation, numeric value).

3. AG-News3: Topic Classification Dataset
(Zhang et al., 2015). This task involves clas-
sification of news articles,we choose the 4
largest classes from this corpus to construct
our dataset, using only the title and description
fields.

4. DBpedia:Topic Classification Dataset
(Lehmann et al., 2015; Zhang et al.,
2015).This involves classification of
Wikipedia articles in 14 categories.

4.2 Pre-processing
We utilize same pre-processing techniques utilized
in (Johnson and Zhang, 2017; Howard and Ruder,
2018). We add special tokens for uppercase letters,
following which we convert the uppercase letters
to lowercase for consistency - this allows us to ex-
plicitly incorporate the effect of capitalization. We
also add tokens for repetitions, along with special
tokens to indicate the start and end of document.
This allows us to capture aspects from the docu-
ment that are pertinent to text categorization.

4.3 Experimental Details
The proposed workflow has constituent compo-
nents that can be evaluated individually.

1https://ai.stanford.edu/∼amaas/data/sentiment/
2http://cogcomp.org/Data/QA/QC/
3http://www.di.unipi.it/∼gulli/AG corpus of news

articles.html

https://ai.stanford.edu/~amaas/data/sentiment/
http://cogcomp.org/Data/QA/QC/
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

Table 1: Dataset summary statistics. K: Number of
classes. l: Average length of a document in the training
set

Dataset IMDB TREC-6 AG DBPedia
Training 25k 5452 120k 560k
Testing 25k 500 7600 70k
K 2 6 4 14
l 234 11 45 55

4.3.1 Embedding
We perform two sets of experiments. For the first
experiment we adopted the fixed size word vectors
from (Pennington et al., 2014). In particular,
our experiments utilize the GloVe embedding 4

trained on 6 billion tokens of Wikipedia 2014
and Gigaword 5. For the words which are absent
in GloVe we average the vector representations
of 8 words around the word in training dataset
as its word vector as suggested by (Wang and
Jiang, 2015). The word embedding are then
fine-tuned during training specific to task to boost
performance. The second set of experiments,
instead of using fixed length word vectors, we
pre-train the model (referred to as the language
model) on Wikitext-103 consisting of 28,595
pre-processed Wikipedia articles and 103 million
words utilizing Discriminative learning rates
and Gradual unfreezing of layers introduced by
(Howard and Ruder, 2018) to encode the document
and then we perform task specific fine-tuning to
further improve the classification performance.
This is analogous to training/fine-tuning model in
Computer vision, where we provide a warm start
to the model by pre-training the model on much
larger dataset.

4.3.2 Training Setting
We train the state of the art AWD-LSTM Teacher
with an embedding size of 400, 3 layers, 1150 hid-
den activations per layer, and a BPTT batch size of
70. We apply different dropout to different types
as suggested by (Merity et al., 2017). The student
CNN network has filter sizes of 3, 4 and 5. We
pad the documents which have length less the 3,
so that convolution operation is possible over the
sentence. The models were implemented in Py-
Torch and were adapted from prior works (Howard
and Ruder, 2018; Kim, 2014). The CNN trained

4https://nlp.stanford.edu/projects/glove/

using the proposed method outperforms the CNN
architecture and the teacher network and is 15x
more computationally efficient from its teacher.
The experiments were first performed on IMDB
dataset for sentiment analysis to tune γ and λ hyper-
parameter to their optimal values of 0.3 and 0.5 we
then validate these parameter using the TREC-6
data set for question classification.

For all our experiments we use Adam with de-
fault setting β1 = 0.9 and β2 = 0.99 with a batch
size of 64 and we follow cyclic learning rate update.
We train our model until we observe a drop in the
performance.

4.4 Baselines

We compare our method to several popular models
in our experiments :

1. fastText : Linear classifiers are often consid-
ered as strong baselines for text classification
problems (Joulin et al., 2016). Here we gen-
erate bi-grams of the sentence and embed the
original words as well as bi-grams into 100
dimensional fixed vector which then use for
classification.

2. CNN : We use CNN architecture inspired by
(Kim, 2014) and train it using various teacher
which are recurrent in nature. We further com-
pare our CNN trained through blending pro-
cess to other convolutional neural networks
viz.character level CNN (Zhang et al., 2015)
referred to as c-CNN and very Deep CNN
network (Conneau et al., 2016) referred to as
b-CNN.

3. RNN: We use AWD-LSTM (Merity et al.,
2017), Bi-Directional LSTM (Bi-LSTM)
(Zhou et al., 2016) as our teacher model. We
empirically validate that by using a better per-
forming teacher model we can improve the
performance of our student network. We leave
exploration of the more efficient teacher net-
work for different tasks to future work, but
expect that they would boost performance.

5 Results

5.1 Overall Performance

Through our experiments shallow networks lead
to only a slight drop in performance over deeper
alternatives. In this scenario, our choice of shal-
low CNN networks is primarily driven by two fac-

https://nlp.stanford.edu/projects/glove/

Table 2: Classification results on several standard benchmarks. each column represents accuracy of classification
which has been averaged over three random seeds.

Model IMDB TREC-6 AG DBPedia
Linear Fasttext (Joulin et al., 2016) 85.22 88.2 92.6 98.5

RNN
LSTM 82.77 90.2 82.77 -

Bi-LSTM (Zhou et al., 2016) 84.11 93.0 93.0 99.12
AWD-LSTM (Merity et al., 2017) 95.4 96.4 95.0 99.20

CNN
a-CNN (Kim, 2014) 88.22 92.0 91.6 98.6

b-CNN (Conneau et al., 2016) - 93.0 91.3 98.4
c-CNN (Zhang et al., 2015) - 93.2 90.49 98.3

Ensemble
CNN + LSTM 88.63 93.15 92.0 99.0

CNN + AWD-LSTM 95.4 96.7 95.0 99.23

Blended*
CNN (T:LSTM) 87.23 91.08 92.3 99.14

CNN (T:AWD-LSTM) 93.2 92.34 92.5 99.1

Table 3: Comparison on the execution time of the meth-
ods is execution time compared to the our proposed
CNN training using RNN teacher on IMDB dataset.

Model Execution Time
Linear Fasttext 1.1x

RNN
LSTM (Tai et al., 2015) 5.55x

Bi-LSTM 5.64x
AWD-LSTM 15.5x

CNN
a-CNN 1.0x
b-CNN 4.3x

Ensemble
a-CNN + LSTM 6.2x

a-CNN + AWD-LSTM 16.7x

Blended*
a-CNN(T:LSTM) 1.0x

a-CNN (T:AWD-LSTM) 1.0x

tors: interpretablility and ease of deployment to low
resource devices.

The CNN trained through the proposed method
is comparable to its Teacher LSTM network. How-
ever, they are significantly faster at test time thereby
making deployment to resource constrained envi-
ronments (e.g. mobile devices) more feasible. We
are therefore validating the work of (Hinton et al.,
2015) where ’dark knowledge’ from a trained com-
plex network can be transferred to a much simpler
model which is computationally efficient at infer-
ence/scoring time. We have shown that this is pos-
sible not only amongst the same family of models
but also across model families - i.e., distillation of
learnt knowledge from recurrent to convolutional
models.

Figure 1: Error as function of γ

5.2 Model combinations

We evaluate two methods aimed at leveraging the
two alternative model families. The first approach
we use is to combine the two models into an en-
semble. The results in 1 indicate that it is possible
to identify a value of the mixing parameter γ that
provides improvements over either extreme. The
second method is to utilize the Teacher-Student
workflow which, as shown in Table 2, provides bet-
ter improvements than emsembling. We show in 2
that the trade-off hyperparameter λ allows control-
ling the effect of training the Student alone versus
re-using the knowledge from the Teacher.

5.3 Insights

With respect to the baselines utilized in the current
paper, multiple comparisons are informative:

• Methods specifically optimized for speed
(here Fasttext) might give up too much accu-

Figure 2: Error as function of λ

racy, whereas the pursuit of increased perfor-
mance leads to efficiency hits (here the RNN
variants)

• The CNN models (3 options were evaluated
in Table 2) have speed benefits. Within
this model class, increased model complexity
might provide better accuracies. The slowest
evaluated CNN model (”b-CNN”) has lower
scoring times than the fastest RNN model (a
vanilla LSTM-based network)

• We also provide LSTM, Bi-LSTM & AWD-
LSTM alternatives as representatives of the
RNN family. These provide increasing accu-
racies but unfortunately at the cost of scoring
time. Note that on the settings evaluated here,
these RNN models are often significantly bet-
ter than the CNN cousins

• Though the CNN & RNN model classes are
potentially diverse, ensembling as a method to
leverage them both does not necessarily bring
the expected accuracy improvements. It also
suffers from even lower scoring times

• The Blended CNNs by definition would have
equivalent scoring times to the equivalent
source Student models. They do however pro-
vide accuracy benefits over the Student, but
they are currently unable to reach the levels
of the best Teacher models

While the work described here applies blending
to text classification, we believe that the proposed
training workflow can be applied to improve perfor-
mance of any model class pairs that represent differ-
ent points on the accuracy and efficiency trade-off.
This is best represented in our experimental results
by the improved performance of shallow CNNs by

incorporating LSTM priors in the training objec-
tive.

Note that while we highlight the scoring time
benefits of the proposed workflow, the Teacher-
Student pipeline leads to a significantly increased
training time. This is because we have to first fit the
Teacher before transferring the learnt knowledge
to the Student. While the benefits of following this
methodology are present in the results provided,
investigating alternative regimes that also address
training time considerations are of interest and will
be the subject of future work.

6 Conclusion

In this paper, we present a method for training ac-
curate CNNs for text classification tasks by using
state-of-the-art LSTM priors to guide the training
process. Following recent work in related fields,
we refer to the LSTM reference models as “Teach-
ers” whose knowledge is to be transferred into the
“Student” CNN models. In addition to the nor-
mal loss-function, i.e. the difference between the
ground-truth (hard labels) and the predication of the
model, we include a term that penalizes the model
according to the difference between prediction of
the teacher LSTM(soft-targets) and the prediction
of the model. The resulting model performs compa-
rable to the benchmark models in text classification
on four benchmark datasets and is significantly
faster at inference time. Exploring methods that
allow the training of models that are more effec-
tive accuracy and efficiency trade-offs will be the
subject of future work.

References
Shaojie Bai, J Zico Kolter, and Vladlen Koltun.

2018. An empirical evaluation of generic convolu-
tional and recurrent networks for sequence modeling.
arXiv preprint arXiv:1803.01271.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Alexis Conneau, Holger Schwenk, Loı̈c Barrault,
and Yann Lecun. 2016. Very deep convolutional
networks for text classification. arXiv preprint
arXiv:1606.01781.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Krzysztof J Geras, Abdel-rahman Mohamed, Rich
Caruana, Gregor Urban, Shengjie Wang, Ozlem
Aslan, Matthai Philipose, Matthew Richardson, and
Charles Sutton. 2015. Blending lstms into cnns.
arXiv preprint arXiv:1511.06433.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 328–339.

Rie Johnson and Tong Zhang. 2017. Deep pyramid
convolutional neural networks for text categoriza-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 562–570.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. arXiv preprint arXiv:1404.2188.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick Van Kleef,
Sören Auer, et al. 2015. Dbpedia–a large-scale, mul-
tilingual knowledge base extracted from wikipedia.
Semantic Web, 6(2):167–195.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In Proceedings of the 19th international
conference on Computational linguistics-Volume 1,
pages 1–7. Association for Computational Linguis-
tics.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2017. Regularizing and optimizing lstm lan-
guage models. arXiv preprint arXiv:1708.02182.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Devendra Singh Sachan, Manzil Zaheer, and Ruslan
Salakhutdinov. 2018. Revisiting lstm networks for
semi-supervised text classification via mixed objec-
tive function.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. arXiv preprint arXiv:1503.00075.

Ellen M Voorhees and Dawn M Tice. 1999. The trec-8
question answering track evaluation. In TREC, vol-
ume 1999, page 82.

Baoxin Wang. 2018. Disconnected recurrent neural
networks for text categorization. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2311–2320.

Shiyao Wang, Minlie Huang, and Zhidong Deng. 2018.
Densely connected cnn with multi-scale feature at-
tention for text classification.

Shuohang Wang and Jing Jiang. 2015. Learning nat-
ural language inference with lstm. arXiv preprint
arXiv:1512.08849.

Sida Wang and Christopher D Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics: Short Papers-Volume 2, pages 90–94. As-
sociation for Computational Linguistics.

Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich
Schütze. 2017. Comparative study of cnn and rnn
for natural language processing. arXiv preprint
arXiv:1702.01923.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Fran-
cis Lau. 2015. A c-lstm neural network for text clas-
sification. arXiv preprint arXiv:1511.08630.

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu,
Hongyun Bao, and Bo Xu. 2016. Text classifi-
cation improved by integrating bidirectional lstm
with two-dimensional max pooling. arXiv preprint
arXiv:1611.06639.

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162

